A pair of rare three-dimensional chiral polyoxometalate-based metal organic framework enantiomers featuring superior performance as the anode of lithium ion battery

Weiwei Cheng, Fengcui Shen, Yun-Shan Xue, Xi-Ming Luo, Min Fang, Ya-Qian Lan, and Yan Xu

ACS Appl. Energy Mater., Just Accepted Manuscript • DOI: 10.1021/acsaem.8b00938 • Publication Date (Web): 14 Aug 2018

Downloaded from http://pubs.acs.org on August 26, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
A Pair of Rare Three-dimensional Chiral Polyoxometalate-based Metal Organic Framework Enantiomers Featuring Superior Performance as the Anode of Lithium ion Battery

Weiwei Cheng, ‡a.c Feng-Cui Shen, ‡a,b,d Yun-shan Xue, ‡a Ximing Luo, ‡a Min Fang, ‡b Ya-Qian Lan ‡b and Yan Xu ‡a

‡College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China. E-mail: yanxu@njtech.edu.cn

‡Department of Chemistry, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. E-mail: yqlan@njnu.edu.cn

†School of Chemistry and Bioengineering, Nanjing Normal University Taizhou College, Taizhou 225300, China.

‡College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China.

ABSTRACT: Two rare 3D chiral polyoxometalate-based metal–organic framework (POMOF) materials, D-[PMoO$_4$(MoO$_3$)$_3$$_2(OH)_2$][BPP$_2$·2]Pyridine·H$_2$O(D-I) and L-[PMoO$_4$(MoO$_3$)$_3$$_2(OH)_2$][BPP$_2$·2]Pyridine·H$_2$O(L-I) (BPP = 1,3-Bis(4-pyridyl)propane) were prepared with achiral ligand under the solvothermal conditions. They are the first three-dimensional chiral POM-based frameworks based on Zn-ε-Keggin unit and achiral ligands. The CD spectra and structural analyses indicate that the two polyoxometalate-based metal organic framework are enantiomers. The alternate connection of Zn-ε-Keggin cluster and BPP ligands generates helical infinite chains while each single spiral chain is further interlinked to adjacent neighboring units to produce a 3D regular ordered chiral architecture. As a result of the advantages of chirality and POMs, a great deal of research is concentrating on the syntheses of polyoxometalate-based hybrid materials. The second approach to assemble chiral POM-based hybrid materials is based on self-assembly by the change of bond distances and bond angles, the formation of lacunae, structure transformation, substitution with other metals, or modifying with achiral structural unit to destroy the regular spiral conformation of the compound which are usually composed of W, Mo, V ions in their highest oxidation states and being multi-electron redox active systems, have drawn intense concern due to their intriguing practical applications such as catalysis, ion-exchange, electrochemistry and so on.1-3 Chirality, widely found in nature, have drawn intense concern not only due to their fascinating structural architectures, but extensive applications such as asymmetric catalysis, chiral recognition and nonlinear optical properties.4-10 In light of the advantages of chirality and POMs, a great deal of effort is concentrating on the syntheses of polyoxometalate-based chiral hybrid compounds, which can integrate the functional properties of polyoxometalates and chirality. As a result of the outstanding contribution of Pope, Yamase, Wang and other groups, several POM-based chiral hybrids have been obtained, most of which are molecular complexes and layered coordination polymers.1-3,17 However, the reasonable preparation of chiral 3D POM-based MOF complex remains a great challenge.

Up to now, the preparation of POM-based chiral hybrids tends to focus upon two main methods. The first method is directly introducing chiral building blocks (chiral metal-organic moieties or chiral organic ligands) to decorate the surface of POMs.18-19 Therefore, the chirality can transform from these chiral units to the whole inorganic-organic hybrid framework. For example, Wang's research Group obtained two new enantiomerically pure compounds with D-proline and L-proline.20 The second approach to assemble chiral POM-based hybrid materials is based on self-assembly by the change of bond distances and bond angles, the formation of lacunae, structure transformation, substitution with other metals, or modifying with achiral structural unit to destroy the mirror or symmetric centers.21-27 In this situation, chiral POM-based hybrid materials can be isolated in enantiomerically pure form by spontaneous resolution. It's very rare for spontaneous resolution phenomena and only happens occasionally.28-30

Besides the methods of syntheses and novel structures of chiral POM-based compounds, their applications are also attracting significant attention from both academia and industry. Nowadays, the development of energy storage materials is a hot issue.31-33 Lithium batteries (LIBs) have exhibited promising applications in energy storage.34-43 As a consequence, many endeavors are concentrating on exploiting the anode electrode materials with superior capacity and impressive rate capability for rechargeable LIBs. According to a recent report, in the charge and discharge process, the regular spiral conformation of the compound may offer a stable channel for charge transfer.44 As we know, 3D chiral POM-based MOF materials, which also contain regular complex helical conformations and the redox of metal ions of POMs and provide stable charge transmission channels and oxidation-reduction center during the discharge-charge process, may show superior appli-
cations related to Li-ion rechargeable batteries. Therefore, it is meaningful to prepare chiral 3D POM-based compounds containing a spiral chain and explore their performance in Li-ion batteries.

In this work, our group chose flexible 4,4’-(1,3-propanediyl)bis-pyridine (BPP) as the ligand, in situ Zn-ε-Keggin as the polyoxoanion, to self-assemble 3D chiral POM-based compounds for the following reasons: i) The change in the BPP ligand’s configuration will lead to the lack of symmetric center, leading to chiral compounds with spiral chain. ii) The Zn-ε-Keggin possesses a tetrahedral molecular geometry in which a central P atom is located at the center with four ZnII cations located at the corners of this tetrahedron, which facilitates the formation of stable structures. iii) The variable-valence redox activity of eight MoV and four MoVI element in Zn-ε-Keggin unit could provide a pathway for electrons transfer, which is beneficial to improve the performance of Li ion battery. In the end, we succeeded in the syntheses and characterizations of two rare chiral compounds:

D-

PMo4V3O37·2Zn2·2[BPP]·2H2O (D-1) and L-

PMo4V3O37·2Zn2·2BPP·2H2O (L-1).

The crystal structural analyses indicate that these two kinds of coordination polymers are a pair of isomers. The substantial distinctions between compound D-1 and compound L-1 are that compound L-1 contains helical chains with left-handed, while compound D-1 is consist of helical chains with right-handed. As far as we know, it is not easy to synthesize chiral POMOFs from achiral precursors. More importantly, no studies on chiral POMOF materials that based on Zn-ε-Keggin unit have been investigated. The compound 1 shows high chemical stability because it can maintain the integrity of the crystal in water solution in the pH range 2-12. When compound 1 acted as the anode of LIBs, it exhibited an initial discharge capacity of 1427 mA h g⁻¹ and a steady reversible capacity of 1004 mA h g⁻¹ at 100 mA g⁻¹ for 100 cycles. It should be highlighted here that such a high reversible capacity has never been reported for the pristine POM-based crystals. In addition, we are the first to employ chiral POM-based 3D frameworks based on Zn-ε-Keggin units to demonstrate that the helical infinite chains and the metal ions redox reactions of Zn-ε-Keggin units are facilitate to boost the performance of LIBs.

X-ray crystallography structural analyses indicate that compound D-1 and compound L-1 is a pair of optic isomers. The crystal structure of both compounds consist of half of the ε-[ZnPMo12O40] ion, one BPP ligands, one guest water molecule and one guest pyridine molecule (Figure 1a). For clarity, only the structure of compound 1 is described herein. Compound L-1 crystallize in the the trigonal crystal system, chiral space group P3221. In compound L-1, each ZnII ion possesses the tetrahedral coordination geometry, which is connected to three O atoms derived from one ε-Keggin unit and a N atom derived from BPP ligands. The distances of Mo-Mo have demonstrated the existence of eight Mo(V) and four Mo(VI) ions in the ε-Keggin cluster unit. As shown in Figure 2a (left), the Zn1 and Zn2 cations are connected by BPP ligands and the ε-Keggin clusters to form a 1D left handed spiral infinite chain [ε-Keggin-Zn2·BPP-Zn1]. The main symmetry of the above helical chain is the 3 screw axis. Accordingly, each wall of channel is weaved by the spiral chains. There exist completely contrary mirror images of the appropriate spiral chain in compound D-1 corresponding to those of compound L-1 (Figure 2a right).

Another 1D left handed infinite helical chain [ε-Keggin-Zn1-BPP-Zn2] is built from Zn1 and Zn2 cations, ε-Keggin cluster units, BPP ligands. One amusing aspect of the compound L-1 is that its single left-handed spiral chain is originated from each other. when observed closely, the interlocked single-helical parts share ε-[ZnPMo12O40] ions in the whole framework, which is different from conventional double helix, allowing us to make clear the complex framework in compound L-1 (Figure 2b). As a result, adjacent single helix is further interlinked to each other to give a regular and ordered 3D chiral architecture. From the perspective of topological structures, each Zn-ε-Keggin cluster is
considered as a tetrahedral node and the BPP ligand as 2-connected linker that are simplified, then the whole structure can be simplified as 2-fold Interpenetrated \textit{qtw} net with Schl"{a}fli symbol \(6^4.8^2.\) In order to increase the steadiness of the structure and promote the generation of small open passageway, one network is interweaved by another same \textit{qtw} network to generate a two-fold interpenetrated array (Figure 1b). The flack parameters are 0.032(15) for L-1 and 0.057(8) for D-1. The flack parameter value of both compounds tends to zero, which indicates that the chiral space group of both compounds is chosen correct and the crystals are chiral.

![Figure 3. Power XRD patterns of compound 1. as-synthesized compound 1 and the as-synthesized compound 1 after immersed in a variety of pH and electrolyte conditions for 12 h at room temperature](image)

Figure 3. Power XRD patterns of compound 1. as-synthesized compound 1 and the as-synthesized compound 1 after immersed in a variety of pH and electrolyte conditions for 12 h at room temperature

![Figure 4. The circular dichroism spectra of D-1 and L-1.](image)

Figure 4. The circular dichroism spectra of D-1 and L-1.

As previously mentioned, it is very important that electrode materials have high chemical and thermal stability. As shown in Fig. 3a and b, compound 1 shows good stability when immersed in aqueous solutions with a wide pH range (1, 3, 5, 9 and 12) at room temperature. Additionally, compound 1 has good tolerance to the electrolytes of LIBs (Figure 3b). The thermal stability of compound 1 has been studied by TGA analysis in N\(_2\) atmosphere.

The weight loss of compound 1 from room temperature to 300 °C is 6.4% related to the releases of free water and pyridine molecules. From 306 °C to 836 °C, the framework gradually collapses in conformity with the splitting of all organic ligands. (Figure S1, ESI†). As shown in Figure S2, the signature of P=O and Mo=O vibrations of the inorganic skeleton of the POM are encountered around 1075 and 940 cm\(^{-1}\), respectively. The Mo-O-Mo vibrations can be found below 940 cm\(^{-1}\).

As shown in Figure S3, because of their chirality, single crystals of compound D-1 and compound L-1 show different colours under the polarized light, while they looked the same under natural light. Therefore, we can separate the enantiomers manually. The chirality of compound D-1 and compound L-1 was further studied by circular dichroism (CD) spectra. According to the mirror images of solid state circular dichroism spectra of compound D-1 and compound L-1, it is obvious that compound D-1 and L-1 is a pair of POM based enantiomers. The spectra of compound L-1 and compound D-1 show intense cotton effects at 206, 220, 227 and 254 nm (Figure 4).

![Figure 5. Electrochemical performance of compound 1 as the anode of LIBs: (a) CV profiles at a sweep rate of 0.2 mV s\(^{-1}\). (b) Cycling performance of compound 1 and BPP at 100 m A g\(^{-1}\). (c) The charge–discharge curves for various cycles at 100 m A g\(^{-1}\). (d) Rate performances and coulombic efficiencies of compound 1 at different current densities. (e) Cycling performances at 1000 mA g\(^{-1}\). 50 m A g\(^{-1}\) was applied to activate the electrode in the first ten cycles.)](image)

Figure 5. Electrochemical performance of compound 1 as the anode of LIBs: (a) CV profiles at a sweep rate of 0.2 mV s\(^{-1}\). (b) Cycling performance of compound 1 and BPP at 100 m A g\(^{-1}\). (c) The charge–discharge curves for various cycles at 100 m A g\(^{-1}\). (d) Rate performances and coulombic efficiencies of compound 1 at different current densities. (e) Cycling performances at 1000 mA g\(^{-1}\). 50 m A g\(^{-1}\) was applied to activate the electrode in the first ten cycles.)

Because Zn-e-Keggin has strong redox ability and the capability to provide multi-electron. In addition, the channel of MOF is beneficial to the electrolyte infiltration, which significantly increases the transport speed of Li\(^+\) ions and electrons in the electrolyte, giving rise to a superior electrode activity. To assess their electrochemical performance, electrochemical study such as cyclic voltammetry, cycling stability, galvanostatic charge--
discharge performance and rate capability were studied. Figure 5a showed the CV curves of compound 1 at a sweep rate of 0.2 mV s⁻¹ in initial 4 cycles. A wide cathodic signal at about 0.76 V can be seen in the first circle, which was due to the inevitable generation of the solid-electrolyte interphase (SEI) film. In following sweep measurement, the reversibility and oxidative signals were observed at 0.92 V and 1.30 V attributing to the oxidation-reduction process of zinc and molybdenum. The subsequent CV cycles almost overlap with each other, demonstrating superior cycle stability due to the generation of a stable SEI film. The cycling performance of compound 1 was studied at 100 mA g⁻¹ in the voltage range of 0.01 V - 3.0 V versus Li/Li⁺. The charge/discharge performance together with the coulombic efficiency (CE) of compound 1 is demonstrated in Figure 5b. Compound 1 shows high capacity with outstanding cycle stability. In pace with the charge–discharge cycles after 100 sweeps, the reversible capacity of compound 1 can be as high as 1004 mA h g⁻¹.

To the best of knowledge, it is much higher than the previously reported POM-based materials. To further give the insight of the cyclic performance of compound 1, the CE was 1427.8 and 780.9 mA h g⁻¹ at 1000 and 2000 mA g⁻¹, respectively. R1 represents the electronic resistance of the electrolyte and electrodes. R2 represents charge transfer resistance. Warburg impedance (W0) represents propagation of lithium ions into the solid phase. The impedance value of the compound 1 before the cycle was 179 Ω. The total resistance of compound 1 after the cycle was as low as 81 Ω demonstrating the fairly good dynamics which may due to the fact that the flexible infinite helical chain structure of compound 1 facilitates the lithium ion insertion/extraction and electron transmission. This is in line with the high coulombic efficiency and the obvious improvement in rate capability performance.

The cyclic voltammograms of compound 1 at various sweep rates were performed from 0.01V to 3.0 V (Figure S8) to confirm whether capacitance is dominated by the capacitive-controlled behavior or not based on the high reversible capacity. A power law functional relationship between current (i) and the sweep rate (v), i = avᵇ, can be used to explain this with a and b representing the alterable parameters. Under normal conditions, b = 0.5 signifies that the electrode reaction is diffusion-controlled and the electrode reaction satisfies Cottrell’s equation, while b=1 represents the reaction is restricted by a surface process. Base on the incline of the linear function graph of log i versus log v, we can calculate the parameter b (Figure S9). While the scan rate gradually varied from 0.2 to 10mV s⁻¹, the parameter b is calculated to be 0.58 at 1.1 V, signifying the main contribution of the diffusion-controlled storage process of lithium. When it comes to 0.1 V, the b value is 0.91 corresponding to the surface process. The above research proves the joint contribution of the battery and capacitance performance.

The obtained high capacity and rate stability are considered to be due to the intrinsic features and the unique structure of our anode. First, Zn-e-Keggin units possess high redox activity on the basis of molybdenum and zinc element, which is good for the transfer of electrons. Second, the spiral chains of compound 1 offer good power to buffer the volume variations owing to the discharge/charge process, which offer an effective medium for charge transfer during charging and discharging cycle. Third, the spiral chains of compound 1 guarantee more active sites contacting the point of lithium ion and electrolyte guaranteeing the rapid transfer of electrons in the electrode. All these unique chemical and physical properties of POMOF are beneficial to the superior electrochemical performance of the anode of LIBs.

In summary, we designed and prepared an unprecedented stable chiral three-dimensional POM-based MOF materials constructed by achiral BPP ligands and Zn-e-Keggin units with excellent chemical stability in reagents with various pH and electrolytes. Furthermore, compound I exhibits splendid electrochemical activity as the anode of LIBs, acquiring a reversible capacitance of 1004 mA h g⁻¹ at 100 mA h g⁻¹ after 100 cycles with impressive.
rate performance. Such a high reversible capacity has previously never been reported for the LIB anodes within the pristine POM-based crystals. This excellent performance can be ascribed to its flexible infinite helical chain structure facilitating the lithium ions insertion/extraction, electron transmission and buffering the volume changes during charge and discharge. What's more, we first employed the chiral three-dimensional POMOF crystalline to demonstrate that the spiral chains structure and the redox active center of metal ions in POMs are helpful to greatly enhance the properties of LIBs, which might indicate a direction of the design and preparation of novel anode materials in relation to chiral materials with spiral chains for the future development in LIBs material.

ASSOCIATED CONTENT

Supporting Information
Synthesis, Single-crystal structure analysis, characterization, supplementary structural figures, PXRD measurements, IR spectrum, XPS analysis crystallographic data, Comparison of Compound-1 with other pristine anode materials.

Crystallographic data for compound D-1 and L-1 (CIF)

AUTHOR INFORMATION

Corresponding Author
*yanwu@njtech.edu.cn, yqlan@nju.edu.cn

Notes
† W.C. and F.S. contributed equally to this work.

ACKNOWLEDGMENT

This work was supported by the NSFC (Grant 21571103), Natural Science Foundation of Jiangsu Province, China (GrantBK2012823) and the Qing Lan project.

REFERENCES

(50) Cordes, D. B.; Hanton, L. R.; Spicer, M. D., Helices versus Zigzag Chains: One-Dimensional Coordination Polymers of Ag1 and Bis(4-pyridyl)amine. Inorg. Chem. 2006, 45, 7651-7664.

(55) Xie, J.; Zhang, Y.; Han, Y.; Li, C., High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano 2016, 10, 5304-5313.

Two rare 3D chiral polyoxometalate-based metal–organic framework (POMOF) materials, D-\([\text{PMo}_{8}\text{Mo}_{4}\text{O}_{37}(\text{OH})_{3}\text{Zn}_{4}][\text{BPP}]_{2} \cdot 2[\text{Pyridine}] \cdot \text{H}_{2}\text{O}(\text{D-1})\) and L-\([\text{PMo}_{8}\text{Mo}_{4}\text{O}_{37}(\text{OH})_{3}\text{Zn}_{4}][\text{BPP}]_{2} \cdot 2[\text{Pyridine}] \cdot \text{H}_{2}\text{O}(\text{L-1})\) (BPP = 1,3-Bis(4-pyridyl)propane) were prepared with achiral ligand under the solvothermal conditions. They are the first chiral POM-based 3D frameworks based on Zn-\(\varepsilon\)-Keggin unit and achiral ligands. When compound 1 (mixtures of D-1 and L-1) was used as an anode electrode material of rechargeable Li-ion batteries (LIBs), excellent reversible capacity of 1004 mA h g\(^{-1}\) was obtained after 100 cycles along with cycle stability and outstanding rate performance. Such a high reversible capacity has previously never been reported for the LIB anodes within the pristine POM-based materials.