Monometatonic Catalytic Models Hosted in Stable Metal–Organic Frameworks for Tunable CO2 Photoreduction

Xiao-Kun Wang†,‡, Jiang Liu,*)& Lei Zhang,† Long-Zhang Dong,‡ Shun-Li Li,§ Yu-He Kan,§ Dong-Sheng Li,‡,*,† and Ya-Qian Lan†,*,‡

†College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, P.R. China
‡School of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, P.R. China
§Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, P.R. China

ABSTRACT: The photocatalytic reduction of CO2 to energy carriers has emerged as one of the most promising strategies to alleviate the energy crisis and CO2 pollution, for which the development of catalyst was considered as the determining factor for the accomplishment of this conversion process. In this study, three stable and isostructural metal–organic frameworks (denoted as MOF-Ni, MOF-Co, and MOF-Cu) have been synthesized and used as heterogeneous catalysts in photocatalytic CO2 reduction reaction (CO2RR). It is worth noting that the MOF-Ni exhibited very high selectivity of 97.7% for photoreducing CO2 to CO, which has exceeded most of the reported MOF-based catalysts in the field. Significantly, the MOFs associated with a monometallic catalytic center offer a simple and precise structural model which allows us to understand more definitively the specific effects of different metal-ion species on photoreduction of CO2 as well as the reactive mechanism.

KEYWORDS: metal–organic frameworks, isostructural, photocatalytic CO2 reduction, high selectivity, monometallic catalytic model, reactive mechanism

In recent years, the increased emission of anthropogenic CO2 from the burning of fossil fuels is leading to serious issues such as global warming and an energy crisis. Great efforts in finding efficient strategies to solve these problems have been made.1,2 For instance, considering that solar energy is a clean and renewable energy source, visible-light-driven photocatalytic CO2 reduction reaction (CO2RR) that converts CO2 into carbon-based energy carriers (hydrocarbon fuels or chemicals) has been considered as one of the most promising solutions.3–6 However, the activation process for the CO2 molecule with intrinsic chemical inertness that enables the reaction to overcome large thermodynamic barriers is difficult to achieve. Fortunately, the development of efficient and selective catalysts has proven to be extremely vital in addressing the above issue. In recent years, a variety of semiconductors (e.g., TiO2, ZrO2, Bi2WO6, and WO3) and nanocomposites have been used as photocatalysts to attain CO2RR.7–11 Although most semiconductor-based nanomaterials exhibit high photocatalytic performance, the complicated structural components and indistinct active sites are always difficult to productively investigate the reactive mechanism.12–15 Consequently, how to develop an efficient photocatalyst with precise structural information in principle is an important prerequisite for an explanation of the photocatalytic mechanism of CO2RR.16

Metal–organic framework (MOF) constructed by metal ions/clusters and functionalized organic ligands is a one kind of crystalline material with well-defined structure. Because of the structural tailorability and ultrahigh surface area, MOF has been widely applied in many fields.17–30 Recently, many studies have demonstrated that MOFs can serve as catalysts to reduce CO2 as well as offer a good platform to study the reaction mechanism on a molecular level; interest in this area of research continues to increase.31–41 However, the reaction condition for CO2 photoreduction is somewhat harsh in that it usually requires the catalyst to have high structural stability in reaction solution. This is actually a big challenge for the majority of the reported crystalline MOFs. In particular, the CO2RR carried out in a relatively alkaline system, which is beneficial for the dissolution of more CO2, has additional

Received: December 6, 2018
Revised: January 12, 2019
Published: January 15, 2019
requirements for chemical stability of the involved MOF. Additionally, the active centers of most MOF-based catalysts are mainly homo-/heterometallic cluster as secondary building units.42−44 Because of the collaborative contribution and interaction between active centers within a cluster to the photocatalytic performance, the catalytic ability of a single-metal active site is hard to evaluate such that the relevant reaction mechanism is still elusive and intricate.45−47 Consequently, the construction of MOF-based catalyst with a single catalytic active center and high structural robustness to overcome the aforementioned troubles is quite desirable.

With these considerations in mind, we successfully designed and synthesized three stable and isomorphic MOFs, \(\{ \text{Cu}_3(\text{TCA})_2(\text{dpe})_3(\text{H}_2\text{O})_3\}_n (\text{MOF-Cu}) \), \(\{ \text{Co}_3(\text{TCA})_2(\text{dpe})_3(\text{H}_2\text{O})_3\}_n (\text{MOF-Co}) \), and \(\{ \text{Ni}_3(\text{TCA})_2(\text{dpe})_3(\text{H}_2\text{O})_3\}_n (\text{MOF-Ni}) \), which are used in different transition-metal centers (CuIII, CoII, and NiII) and mixed organic ligands [4,4’,4”-nitriilotribenzoic acid ligands (TCA) and 1,2-di(4-pyridyl)ethylene (dpe)]. It is noteworthy that these MOFs use a single active metal center as a node, which implies a simple and straightforward structural model to analyze the influence of different transition-metal centers on photocatalytic reduction of \(\text{CO}_2 \). As expected, the MOFs with
different catalytic active centers (CuII, CoII, and NiII) were treated as catalysts applied in heterogeneous photocatalytic CO2RR, which indeed resulted in notable effects on the sort and selectivity of mainly reductive products. Interestingly, MOF-Ni exhibited very high catalytic selectivity (97.7%) of CO, which has surpassed most of the reported MOF-based catalysts applied in photocatalytic CO2RR, representing the most efficient MOF-based catalyst with NiII ion as the active center. By contrast, MOF-Cu and MOF-Co showed high selectivity (77.4%) of H2 and moderate selectivity (47.4%) of CO, respectively. Notably, the corresponding theoretical calculations are consistent with the favorable photocatalytic results and offer important insight into the influence of different monometallic catalytic centers on photocatalytic CO2 conversion.

Single-crystal X-ray diffraction analysis reveals that MOF-Cu, MOF-Co, and MOF-Ni have almost identical host frameworks; all of them crystallize in the trigonal system with R3 space group. The only difference is that five-coordinated CuII ion adopts tetragonal pyramid geometry, while CoII and NiII ions have one more axial coordination H2O molecule to form an octahedron environment (Figure 1a, Figures S1 and S2). The coordination sphere of CuII ion is surrounded by two carboxylate-O atoms from two TCA ligands, two N atoms from two dpe ligands, and one O atom from axial coordination H2O molecule. Considering that MOF-Co and MOF-Ni are isomorphic, MOF-Ni is selected to describe their structures herein. MOF-Co and MOF-Ni include two equivalent pairs of N and O atoms, the same as the CuII ion in the equatorial plane and two O atoms from two axial coordination H2O molecules. The Ni–N/O bond lengths in the equatorial plane are in the range of 2.0–2.1 Å, while the axial Ni–O bond lengths are 2.0 Å. The carboxylate group of the TCA ligand adopts a μ1–η1:η0 coordination mode and each TCA ligand connects three different NiII ions (Figure S3a). Notably, TCA ligands are connected to Ni ions along the crystallographic c axis to form a 2D network having a twisted hexagon window (Figure S3b), and 2D networks are threefold interpenetrated into a layered structure (Figure 1b). Interestingly, the adjacent 2D layers are further pillared by the dpe ligands to form an overall 3D network (Figure 1c and Figure S4). Additionally, the framework of MOF-Ni and MOF-Co can be described as 3,4-connected networks with the Schlüfi symbol \{103\}3{106}3 from topology (Figure S5).

The purity of the as-synthesized crystals was verified by a powder X-ray diffraction (PXRD) pattern that matched well with the simulated one from the crystal structure (Figure 1a, Figures S7 and S8). It was determined that these MOFs exhibit good chemical stabilities that can maintain their structures in a broad pH value range. Furthermore, their high thermal stabilities were also verified by the thermogravimetric (TG) curves under O2 flow (Figure S9).

The UV/vis spectra demonstrate that these three isostructural MOFs show very broad absorption throughout the region of 450–800 nm, indicating their potential to be catalyst used in photocatalysis (Figure 2b). To clarify the semiconductor properties of these MOFs and the possibility of subsequent photoreduction of CO2, Mott–Schottky measurements were performed at frequencies of 500, 1000, and 1500 Hz. The results indicate that these three MOFs are typical n-type semiconductors (Figure 2c, and Figures S10 and S11). Because the intersection point is independent of the frequency, the flat positions of MOF-Ni, MOF-Co, and MOF-Cu are determined to be −1.14, −1.34, and −1.28 V vs Ag/AgCl, respectively. Thus, the bottom of the conduction band (LUMO) of MOF-Ni, MOF-Co, and MOF-Cu are estimated to be −0.94, −1.14, and −1.08 V vs the normal hydrogen electrode (NHE), respectively. From the Tauc plot, the band gaps of the MOF-

Figure 3. (a) Photocatalytic production of CO and H2 catalyzed by MOF-Cu, MOF-Co, and MOF-Ni. (b) Amount of CO and H2 produced as a function of the time of visible-light irradiation over MOF-Ni. (c) Mass spectra (m/z = 29) analysis of the source of CO. (d) The recycle experiments of MOF-Ni.
Ni, MOF-Co, and MOF-Cu were estimated to be 1.50, 2.02, and 1.77 eV by Kubelka–Munk (KM) method (Figures S12–S14). Then the valence band (HOMO) positions of these three MOFs were calculated to be 0.56, 0.88, and 0.69 eV versus NHE, respectively. Because their LUMO positions are more negative than the reduction potentials of CO2 to many products, it is theoretically feasible to use these MOFs as catalysts for photoreducing CO2.12,52 Additionally, the adsorption of CO2 is often believed to play a crucial role in the catalytic performance of catalyst, so the volumetric CO2 adsorption measurements were performed on the activated samples at 298 K.53,54 As shown in Figure 2d, the CO2 uptakes at 298 K were found to be 40.35, 38.87, and 34.00 cm3 g−1 for MOF-Co, MOF-Ni, and MOF-Cu, respectively.

Taking the above features of these MOFs into consideration, the photocatalytic CO2 RR was conducted under a pure CO2 (1.0 atm, 298 K) atmosphere in a mixed solution of MeCN/H2O (13:1) with trisopropanolamine (TIPA) as an electron donor. Besides, [Ru(bpy)3]Cl2 was added as an auxiliary photosensitizer (PS) was added into the reaction system for increasing visible-light absorption.12,55 Because of the matched LUMO positions between the PS and MOF-based catalysts (Figures S15–S17), photogenerated electrons were allowed to migrate from the PS to the MOFs.56–57 On the basis of the different optical and electrochemical properties of these isomorphic MOFs, their differences in the performance of CO2RR can be demonstrated through a series of photocatalytic experiments. As shown in Figure 3a, increasing the generation of CO (22.3 μmol, i.e., 371.6 μmol g−1 h−1) rather than H2 (0.5 μmol, i.e., 8.3 μmol g−1 h−1) were observed when reducing CO2 with MOF-Ni as a photocatalyst under visible-light irradiation (λ ≥ 420 nm) (Figure 3b). By contrast, MOF-Co displayed a dramatic increase in the production of CO (22.8 μmol, i.e., 1140.0 μmol g−1 h−1) and H2 (25.3 μmol, i.e., 1265.0 μmol g−1 h−1), while only 1.7 μmol (i.e., 68.0 μmol g−1 h−1) of CO and 5.8 μmol (i.e., 232.0 μmol g−1 h−1) of H2 were shown by MOF-Cu in the same reaction system. The TONs of these photocatalytic systems are summarized in Table S3. Remarkably, the MOF-Ni exhibits a higher selectivity of CO over H2 (97.7%) than MOF-Co (47.4%) and MOF-Cu (22.6%). Furthermore, among the reported heterogeneous MOF-based catalysts used in the photocatalytic CO2RR, one that exhibited such a high selectivity toward CO have been rarely seen. Gaseous CO and H2 were the main reaction products detected by gas chromatography during the whole photocatalytic process; only trace amounts of HCOOH were produced in the aqueous solution as detected by ion chromatography.

Considering that MOF-Ni has better catalytic activity and selectivity than MOF-Cu and MOF-Co in photocatalytic CO2RR, a series of reference experiments with MOF-Ni as the example were conducted to determine the important role of the catalyst and the experimental results are summarized in Table S3. The production of CO has a high selectivity of 97.7% over competing H2 generation after 12 h of irradiation with visible light. This selectivity is the highest among most of the reported MOF-based photocatalysts for reducing CO2 to CO (Table S4). The calculated quantum yield of the heterogeneous photocatalytic system was 5.3 × 10−3% under irradiation of 420 nm light (specific calculation method in the Supporting Information). To ascertain the source of the produced CO, we performed an isotopic tracing experiment by replacing CO2 with 13CO2. The 13CO2 was used as the reactant under the same photocatalytic reaction condition, and then the reaction product was examined by gas chromatography-mass spectrometry. After irradiation with visible light, the peak at 1.8 min with m/z 29 was assigned to 13CO (Figure 3c). The results demonstrate that CO2 is the main carbon source rather than the degradation of organics in the reaction. Additionally, the total production of the reaction products has no noticeable decrease after four cycles of 7 h reactions, suggesting the reservation of the original photocatalytic activity of MOF-Ni (Figure 3d). Furthermore, there was no noticeable alteration in their PXRD patterns and IR spectra obtained before and after the photocatalytic reactions, which again evidenced the structural robustness of the catalyst (Figures S23–S25).

To explore the reasons for the difference in photocatalytic activity of the three catalysts, we first assume that charge separation efficiency is an important factor.58 As proved by the photocurrent characterization results, MOF-Ni and MOF-Co reveal obviously more efficient separation of photogenerated electron−hole pairs than MOF-Cu under the same conditions.
The fact is further supported by electrochemical impedance spectroscopy (EIS), which indicates that MOF-Co has the smallest radius and the lowest resistance in charge transportation, while MOF-Cu shows the biggest radius and the largest resistance among them (Figure S27). Therefore, MOF-Co and MOF-Ni possess higher charge-separation efficiency than MOF-Cu.

Density functional theory calculations are performed to understand the specific effects of different metal ion species on photoreduction of CO₂. We first investigate the binding between CO₂ and three metal ions, which plays an essential role in the selectivity and reactivity of the following catalytic reactions. As shown in Figure 4a, both Co and Cu present weak interaction with CO₂ with a long distance of 3.6 Å, while Ni and CO₂ form a strong coordination bond of 2.4 Å. The strong coupling between Ni and CO₂ is attributed to the high spin state of the Ni in an octahedral coordination, as seen in the spin density plot (Figure S30). However, the binding energy, calculated by \(E_{\text{BE}}(\text{Co}) = E(\text{total}) - E(\text{Co})\), is determined to be a small value because of the coupling between Ni and two O in the carboxyl group (Figure S31). Free energy pathways of CO₂ reduction to CO on the metal sites of MOFs and the intermediate structures are shown in Figure 4b and Figure S32. Among the four elementary reaction steps, the *COOH formation serves as the rate-limiting step and follows the order of Cu (2.04 eV) > Ni (1.22 eV) > Co (0.95 eV). The competition reaction of hydrogen evolution reaction (HER) is considered for comparison and the free energy diagram obtains 0.67 eV for hydrogen evolution reaction (HER) is considered for comparison and the free energy diagram obtains 0.67 eV for Ni (1.22 eV) > Co (0.95 eV). The competition reaction of hydrogen evolution reaction (HER) is considered for comparison and the free energy diagram obtains 0.67 eV for HER. The calculation results suggest that MOF-Ni presents the best selectivity among the three complexes because of the strong binding with CO₂ and high HER free energy, and both CO₂RR and HER processes can readily occur for MOF-Co. These findings are in good agreement with the aforementioned experiments.

In accordance with the above experimental results and theoretical calculations, a possible photocatalytic mechanism was proposed (Figure 5). First, the coordination water on the metal center is easily detached to form exposed metal active site, where CO₂ molecules are adsorbed. Because the LUMO of MOF-M is lower than that of \([\text{Ru(bpy)}_3]^{2+}\), the photogenerated electrons in the LUMO of \([\text{Ru(bpy)}_3]^{2+}\) can be transferred to the surface of the MOF-M. \(^{55,60}\). Second, the CO₂ adsorbed on the metal active site accepts an electron to form radical CO₂⁻ intermediate. Third, by the proton-assisted two-electron transport process, the absorbed CO₂ molecule was finally reduced to CO. Finally, the excited state of the photosensitizer was reductive quenching by the sacrificial electron donor TIPA and the generated CO detached from the catalyst surface.

In summary, three isostructural and stable transition-metal-based MOFs were synthesized and used as catalysts applied in the heterogeneous photocatalytic CO₂RR. It is significant that MOF-Ni displays a very high selectivity of 97.7% for the CO₂-to-CO conversion, which has surpassed most of the reported MOF-based catalysts in the field of CO₂RR. Furthermore, the precise and simple structural models with a single metal active site enable us to understand more definitively the specific effects of different metal-ion species on photoreduction of CO₂ and the reactive mechanism. Our findings are anticipated to providing more insights into the development of more efficient, stable and selective catalysts for photocatalytic CO₂RR.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b04887.

Details of synthesis, more characterization, and theoretical calculations (PDF)

Crystallographic data for MOF-Ni (CIF)

Crystallographic data for MOF-Co (CIF)

Crystallographic data for MOF-Cu (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: lidongsheng1@126.com (D.S.L.).

*E-mail: yqlan@njnu.edu.cn (Y.Q.L.).

ORCID®

Long-Zhang Dong: 0000-0002-9276-5101

Dong-Sheng Li: 0000-0003-1283-6334

Ya-Qian Lan: 0000-0002-2140-7980

Author Contributions

These authors contributed equally (X.-K.W. and J.L.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by NSF of China (21673127) and the 111 project of Hubei Province (2018–19).

REFERENCES

